
Design and Analysis of Algorithms 

Homework # 2 

 

Total Marks = 55 

 

Q1) Suppose you have an unsorted array A of colors red, white and blue. You want to sort this array 

so that all reds are before all whites, followed by all blues. Only operations available to you for this 

purpose are: equality comparison A[i] = = c where c is one of the three colors, and swap(i, j) which 

swaps the colors at indices i and j in A. How to sort this array in O(n) worst case time and O(1) 

additional space. Assume that some satellite data is also there with these colors so counting the 

number of reds, whites and blues will not solve the problem.[10 Marks] 

Q2)  Given two sorted arrays X[ ] and Y[ ] of sizes M and N where M ≥ N, devise an algorithm 

to merge them into a new sorted array C[ ] using O( N lg M) comparison operations.  Suppose 

arrays M and N are indexed from 1 to M and from 1 to N respectively. [10 Marks] 

Hint: use binary search.  

 

Q3) Consider an array of distinct numbers sorted in increasing order. The array has been rotated 

(clockwise) k number of times. Given such an array, find the value of k. The solution should be 

efficient and use divide and conquer approach. [10 Marks] 

Examples:  
Input : arr[] = {15, 18, 2, 3, 6, 12} 

Output: 2 

Explanation : Initial array must be {2, 3, 6, 12, 15, 18}. We get the given array after rotating the 

initial array twice. 

 

Input : arr[] = {7, 9, 11, 12, 5} 

Output = 4 

 

 

Q4) [5+5 = 10 Marks] An array A[1 : : : n] is said to have a majority element if more than half of 

its entries are the 

same. Given an array, the task is to design an efficient algorithm to tell whether the array has a 

majority element, and, if so, to find that element. The elements of the array are not necessarily 

from some ordered domain like the integers, and so there can be no comparisons of the form “is 

A[i] > A[j]?”. (Think of the array elements as GIF files, say.) However you can answer questions 

of the form: “is A[i] = A[j]?” in constant time.  



(a) Show how to solve this problem in O(n log n) time. (Hint: Split the array A into two arrays 

A1 and A2 of half the size. Does knowing the majority elements of A1 and A2 help you figure 

out the majority element of A? If so, you can use a divide-and-conquer approach.) [5 Marks] 

 

(b) Can you give a linear-time algorithm? (Use the following divide-and-conquer approach: [5 

Marks] 

 Pair up the elements of A arbitrarily, to get n=2 pairs 

 Look at each pair: if the two elements are different, discard both of them; if they are the 

same, keep just one of them 

 

Show that after this procedure there are at most n=2 elements left, and that they have a 

majority element if and only if A does.) 

 

Q5) [10+5 = 15 Marks] 

(a) In Data Structures, you studied binary heaps. Binary heaps support the insert and 

extractMin 

functions in O(lgn), and getMin in O(1). Moreover, you can build a heap of n elements in 

just O(n). Refresh your knowledge of heaps from chapter no. 6 of your algorithms text 

book. 

Now implement Merge Sort, Heap Sort, and Quick Sort in C++ and perform the following 

experiment: 

1. Generate an Array A of 109 random numbers. Make its copies B and C. Sort A using 

Merge Sort, B using Heap Sort, and C using Quick Sort. 

2. During the sorting process, count the total number of comparisons between array 

elements made by each algorithm. You may do this by using a global less-than-or-equal-

to 

function to compare numbers, which increments a count variable each time it is called. 

3. Repeat this process 5 times to compute the average number of comparisons made by 

each algorithm. 

4. Present these average counts in a table. These counts give you an indication of how the 

different algorithms compare asymptotically (in big-O terms) for a large value of n. 

(b) Now compare the same algorithms in terms of practical time, i.e. the actual running time. 

Simply, repeat the previous example but use the chrono library to compute the actual times 

taken by each algorithm, and report the average value of the time for each algorithm. 

 

 



 


