Design and Analysis of Algorithms

Homework \# 1

Total Marks $=65$

Q1) Suppose we are comparing implementations of insertion sort and merge sort on the same machine. For inputs of size n, insertion sort runs in $4 n^{2}$ steps, while merge sort runs in $32 n \lg n$ steps. For which values of n does insertion sort beat merge sort? [5 Marks]

Q2) What is the smallest value of n such that an algorithm whose running time is $100 n^{2}$ runs faster than an algorithm whose running time is 2^{n} on the same machine? [5 Marks]

Q3) Perform step-count analysis on the following code fragments. Indicate the time taken by each line of code over the life of the program, then add all individual times to get $T(n)$. Where applicable, work in the worst case scenario. Then find an appropriate $\mathrm{O}(\mathrm{f}(\mathrm{n}))$ for each $\mathrm{T}(\mathrm{n})$. In order to do this, you must show must that there exists a positive constant $\mathrm{c}>0$, such that: $\mathrm{T}(\mathrm{n})<=\mathrm{c} \mathrm{f}(\mathrm{n}) .[5 * 3=15$ Marks $]$
(a) int $\mathrm{s}, \mathrm{i}, \mathrm{n}$;
cin>>n;
$\mathrm{s}=0$;
for ($\mathrm{i}=\mathrm{n} ; \mathrm{i}>=1 ; \mathrm{i}--$)
s++;
(b) int sum,i,j,n;
sum $=0$;
$\operatorname{cin} \gg n$;
for ($\mathrm{i}=1 ; \mathrm{i}<\mathrm{n} ; \mathrm{i}=\mathrm{i}^{*} 2$)
for $(\mathrm{j}=1 ; \mathrm{j}<\mathrm{n} ; \mathrm{j}=\mathrm{j} * 2)$
sum ++
c) int $x=0, j=n$;
while (j > 0) \{
x += j*3;
j / = 4;
\}

Q4) Consider sorting n numbers stored in array A by first finding the smallest element of A and exchanging it with the element in $A[1]$. Then find the second smallest element of A, and exchange it with $A[2]$. Continue in this manner for the first $n-1$ elements of A. Write pseudocode for this algorithm, which is known as selection sort. Why does it need to run for only the
first n - 1 elements, rather than for all n elements? Give the best-case and worst-case running times of selection sort in Θ-notation. [5 Marks]

Q5) Prove that $T(n)$ is $\Theta\left(n^{3}\right)$ by finding appropriate constants. [5 Marks]

$$
T(n)=\frac{1}{8} n^{3}-5 n^{2}
$$

Q6) What is the runtime of the following function? Express your answer using the big-O notation. Show all working [5 Marks]

```
Function Mystery (n)
{
    If (n>1)
    {
        Print "hello"
        Mystery(n/5)
        For (i=1 .... n)
            Print "world"
            Mystery(2n/5)
    }
}
```

Q7) Use a recursion tree to determine a good asymptotic upper bound on following recurrences. Please see Appendix of your text book for using harmonic and geometric series. ($4 * 5=20$ Marks)
a) $T(n)=2 T(n / 4)+O(\operatorname{lgn})$
b) $\mathrm{T}(\mathrm{n})=3 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{O}(\mathrm{n})^{3}$
c) $\mathrm{T}(\mathrm{n})=7 \mathrm{~T}(\mathrm{n} / 5)+\Theta(1)$
d) $T(n)=2 T(n / 2)+n / \lg n$
e) $T(n)=3 T(n-1)+\Theta(1)$

Q8) Do a dry run of count inversion pairs algorithm using divide and conquer approach on following array.
$A=\left[\begin{array}{llllllllll}5 & 8 & 3 & 9 & 2 & 6 & 4 & 1 & 7 & 0\end{array}\right]$
Create a recursion tree of the array and write left, right and split inversion pairs each recursive call of the algorithm. [5 Marks]

