	National University of Computer and Emerging Sciences, <i>Lahore</i>
Course	Data Mining
Homework No.	HW 2
Total Marks	30
Start Date	
Due Date/Time	23 March 2024, 11:59 PM
Submission	Google Classroom

Note : You must submit it in handwritten form Late submissions will not be accepted

Q1: 10 marks

Suppose that we have training data $\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})\}$ and we wish to predict y using a nonlinear regression model with two parameters:

$$\hat{y} = a + \exp(x_1 + b)$$

We decide to train our model using gradient descent on the mean squared error (MSE).

- 1) Write down the expression for the MSE on our training set.
- 2) Write down the gradient of the MSE
- Give pseudocode for a (batch) gradient descent function theta = train(X,Y), including all necessary elements for it to work.

Customer ID	Transaction ID	Items Bought
1	0001	$\{a, d, e\}$
1	0024	$\{a, b, c, e\}$
2	0012	$\{a, b, d, e\}$
2	0031	$\{a, c, d, e\}$
3	0015	$\{b, c, e\}$
3	0022	$\{b, d, e\}$
4	0029	$\{c, d\}$
4	0040	$\{a, b, c\}$
5	0033	$\{a, d, e\}$
5	0038	$\{a, b, e\}$

Table 6.22. Example of market basket transactions.

Compute the support for itemsets {e}, {b, d}, and {b, d, e} by treating each transaction ID as a market basket.

Q3: 5 marks

Given a transaction that contains items {1, 3, 4, 5, 8}, which of the hash tree leaf nodes will be visited when finding the candidates of the transaction?

Transaction ID	Items Bought
1	$\{a, b, d, e\}$
2	$\{b, c, d\}$
3	$\{a, b, d, e\}$
4	$\{a, c, d, e\}$
5	$\{b, c, d, e\}$
6	$\{b, d, e\}$
7	$\{c,d\}$
8	$\{a, b, c\}$
9	$\{a, d, e\}$
10	$\{b,d\}$

Q4:10 marks

Given the lattice structure shown in the following Figure and the transactions given in Table label each node with the following letter(s):M if the node is a maximal frequent itemset,

- C if it is a closed frequent itemset,
- N if it is frequent but neither maximal nor closed, and
- I if it is infrequent.

Assume that the support threshold is equal to 30%.

