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Abstract 
 
The purpose of this degree project is to present, evaluate and improve probabilistic machine-
learning methods for supervised text classification. We will explore Naive Bayes algorithm and 
character level n-gram, two probabilistic methods. The two methods will then be compared. 
Probabilistic algorithms like Naive Bayes and character level n-gram are some of the most effective 
methods in text classification, but to get accurate results they need a large training set. Because of 
too simple assumptions, Naive Bayes is a poor classifier. To rectify the problem, we will try to 
improve the algorithm, by using some transformed word and n-gram counts. 

Sammanfattning 
 
Syftet med det här examensarbetet är att presentera, utvärdera och förbättra probabilistiska 
maskin-lärande metoder för övervakad textklassificering. Vi ska bekanta oss med Naive Bayes och 
tecken-baserad n-gram, två probabilistiska metoder. Vi ska sedan jämföra metoderna. Probabilistiska 
algoritmerna är bland de mest effektiva metoder för övervakad textklassificering, men för att de ska 
ge noggranna resultat behövs det att de tränas med en stor mängd data. På grund av antaganden 
som görs i modellen, är Naive Bayes en dålig klassificerare. För att åtgärda problemet, ska vi försöka 
förbättra algoritmerna genom att modifiera ordfrekvenserna i dokumentet.  



 
 

Acknowledgments 
 
 
 
I would like to thank my supervisor Stefan Arnborg, who also happens to be my examiner, for his 
great help and direction. Without his inputs, this degree job would be very poor.  
  



 
 

 
 

Table of Contents 
1 Machine Learning ................................................................................................................................. 1 

2 Text Classification and Its Applications ................................................................................................. 2 

2.1 Relevant technologies ................................................................................................................... 2 

2.2 Text Classification Applications ..................................................................................................... 2 

3 Probabilistic Algorithms ........................................................................................................................ 3 

3.1 Bayesian learning models .............................................................................................................. 3 

3.2 Bayesian Learning .......................................................................................................................... 4 

3.2.1 Naïve Bayes Classifier ............................................................................................................. 5 

3.2.2 Improvements to Naïve Bayes Classifier ................................................................................ 6 

3.3 Character level n-gram .................................................................................................................. 7 

3.4 Smoothing ...................................................................................................................................... 8 

4 Evaluation ....................................................................................................................................... 10 

4.1 Training and Test Data ................................................................................................................. 10 

4.2 Test Results .................................................................................................................................. 11 

4.2.1 NB results .............................................................................................................................. 11 

4.2.2 N-Gram Results ..................................................................................................................... 12 

4.2.3 Important Words .................................................................................................................. 13 

5 Discussion ....................................................................................................................................... 14 

6 Literature ........................................................................................................................................ 15 

 
 



1 
 

  

1 Machine Learning 
 
In machine learning we are interested in computer programs that learn from experience. Software 
algorithms are trained to learn a task. After training a new example/examples unseen during training 
are presented to the trained algorithm for test.  The algorithm builds a model from training 
examples. The algorithm uses then this model to handle new unseen cases [1]. 
A learning problem has the following well defined form [1]: 
 
Task T: is the task to be learned. 
Performance measure P: variable/variables to optimize. 
Training experience E: the source of experience. 
 
For example, an algorithm that classifies documents into different classes may improve its 
performance as measured by the percent of documents that are correctly classified, through 
experience obtained by providing to it examples of documents that belong to the different classes. 
A document classification problem: 
 
Task T: classify text documents into classes or categories. 
Performance measure P: percent of documents correctly classified. 
Training experience E: a database of text documents sorted into classes. 
 
There are different kinds of algorithms for learning: concept learning, decision tree, artificial neural 
network (ANN), genetics, probabilistic algorithms like Naïve Bayes and several others.  These 
algorithms use different strategies/approaches to learn a task. The most common and widely used 
approach is the predictive or supervised learning. The goal of supervised learning is to learn a 

mapping from inputs x to outputs y, given a labeled set of input-output pairs Ɗ = {(𝑥𝑖, 𝑦𝑖)}𝑖=1
𝑁 . Here 

Ɗ is the training set and N is the number of training examples. In the predictive/supervised learning 
approach the problems to be learned have a well defined form or structure. 
A second machine learning approach is descriptive or unsupervised learning. In this approach we 

have only inputs, Ɗ = {𝑥𝑖}𝑖=1
𝑁 , and the goal is to find “interesting patterns” in the data. This is a less 

well-defined problem, since we do not know what types of patterns to look for. 
There is a third approach to machine learning, known as reinforcement learning, which is less 
common. This approach is useful when learning how to act when given occasional reward or 
punishment signals. 
In this degree project we will use the first approach, that is to say, supervised learning. 
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2 Text Classification and Its Applications 
 
Text Classification is the task to classify documents into predefined classes. Text Classification is also 
called: 

 Text Categorization 

 Document Classification 

 Document Categorization 

 
There are two approaches to Text Classification: manual classification and automatic 
classification. In this thesis we are interested in automatic classification using a training sample 
of already classified examples, in particular, probabilistic methods. 

2.1 Relevant technologies 
 

 Text Clustering 

- Create clusters of documents without any external information 

 Information Retrieval (IR) 

- Retrieve a set of documents relevant to a query 

The best known example is Googling 

 Information Filtering 

- Filter out irrelevant documents through user interactions 

 Information Extraction (IE) 

- Extract fragments of information, e.g., personal names, dates, and places, in 

documents 

 Text Classification 

- No query 

- decide topics of documents 

 

2.2 Text Classification Applications 

 E-mail spam filtering – classify an e-mail as spam or not spam 

 Categorize newspaper articles and newswires into topics, such as sports, politics, etc 

 Identify trends in the media flow 

 Language identification, automatically determining the language of a text 

 Genre classification, automatically determining the genre of a text 

 Readability assessment, automatically determining the degree of readability of a text 

 Sentiment analysis, “determining the attitude of a speaker or a writer with respect to  
      some topic or the overall contextual polarity of a document” [Wikipedia] 

 Authorship attribution is the task of determining the author of a text 
      This has applications in historical sciences and forensics 
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3 Probabilistic Algorithms 
 
In this degree project we are interested in probabilistic algorithms that are based on statistics. We 
will examine Naive Bayes algorithm and character level n-gram. Probability is suitable to apply to 
problems which involve uncertainty. In machine learning problems, uncertainty can appear in many 
different forms: what is the best prediction given some data? What is the best model given data? 
Bayesian learning algorithms explicitly manipulate probabilities. Each training example can either 
increase or decrease the estimated probability that a hypothesis is true. This provides a more flexible 
approach to learning compared to algorithms that discard a hypothesis altogether if it contradicts a 
single training example. In Bayesian learning a hypothesis is more or less probable [1]. 
 

3.1 Bayesian learning models 
 
The discussion in this section follows Hertzmann[6], which in turn is inspired by Ed Jaynes’ 
popularization of Bayesian methods [12]. 
Bayes’ theorem is widely used today as the basis of statistical or probabilistic inference. Bayesian 
reasoning provides a natural approach to many difficult data-modeling problems. Bayesian reasoning 
is a model for logic in the presence of uncertainty. Bayesian methods match human intuition very 
closely. The mathematical foundations of Bayesian reasoning are more than 100 years old, and have 
become widely-used in many areas of science and engineering, such as astronomy, geology, 
bioinformatics, evolutionary linguistics, and electrical engineering [6]. Thomas Bayes and Pierre de 
Laplace used the method on simple examples 270 years ago [12]. 
 
Bayesian reasoning provides three main benefits: 
1. Principled modeling of uncertainty – uncertainty is described as probability. 
2. General purpose models for unstructured data – any data can be described by its probability               
distribution, which in turn can be uncertain (hierarchical models). 
3. Effective algorithms for data fitting and analysis under uncertainty – the analytical methods used 
before computers are unsuitable for Bayesian analysis, because many problems do not have 
analytical solutions. 
 
In classical logic, we have a number of statements that may be true or false, and we have a set of 
rules which allow us to determine the truth or falsity of new statements. 
 
Classical logic provides a model of how humans might reason. But, classical logic assumes that all 
knowledge is absolute. Logic requires that we know some facts about the world with absolute 
certainty, and, then, we may deduce only those facts which must follow with absolute certainty. This 
is how pure mathematicians work.  
 
In the real world, there are almost no facts that we know with absolute certainty — most of what we 
know about the world we acquire indirectly, by observing and measuring the external world, or from 
dialogue with other people. In other words, most of what we know about the world is uncertain. 
 
What we need is a way of discussing not just true or false statements, but statements that have 
different levels of certainty, statements in which we have varying degrees of belief. In addition to 
defining such statements, we would like to be able to use our beliefs to reason about the world and 
interpret it. As we gain new information, our beliefs should change to reflect our greater knowledge. 
This is how people who are not pure mathematicians work. 
 
Thomas Bayes has invented what we now call Bayes’ Theorem, or Bayes’ Rule. According to Bayes’ 
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Rule, we have a model of the world described by some unknown variables h, and we observe some 
data D; our goal is to determine h from the D. We describe the probability model as P(D|h)—if we 
know the value of h, then this h will tell us what data we expect. Furthermore, we must have some 
prior beliefs as to what h is (P(h)), even if these beliefs are completely non-committal (e.g., a uniform 
distribution). Bayesian analysis gives a recipe to answer this question: Given the data, what do we 
know about h? 
 
Applying the product rule gives: 
P(D, h) = P(D|h)P(h) = P(h|D)P(D)  
Solving for the desired distribution, gives Bayes’ Rule: 
 

 𝑷(𝒉|𝑫) =
𝑷(𝑫|𝒉)𝑷(𝒉)

𝑷(𝑫)
 

 
The different terms in Bayes’ Rule are used so often that they all have names: 
 

𝑷(𝒉|𝑫)⏟    
𝒑𝒐𝒔𝒕𝒆𝒓𝒊𝒐𝒓

=
𝑷(𝑫|𝒉)⏞    
𝒍𝒊𝒌𝒆𝒍𝒊𝒉𝒐𝒐𝒅

𝑷(𝒉)⏞  
𝒑𝒓𝒊𝒐𝒓

𝑷(𝑫)⏟  
𝒆𝒗𝒊𝒅𝒆𝒏𝒄𝒆

 

 
 
In a document classification application, D represents the possible documents, and h represents 
which class they belong to – in our case, each document belongs to exactly to one class. The 
probabilities P(D) and P(D|h) can be found if we know enough about the language in which the 
documents are written, but unfortunately we don’t.  The second way to find probabilities is by 
means of the central limit theorems, which give conditions under which probabilities can be 
approximated by observed frequencies in a training corpus where we assume that the training 
corpus has the same probability distribution as the instances of the test set. This also does not work 
immediately, because it is obvious that most possible documents will never be seen: a 100 character 
document in a 32 character alphabet has 500 bits of information, and most such documents will 
never be seen by anyone. Even constraining analysis to meaningful documents, where it is estimated 
that a character has 1 bit information content[Wikipedia ], the number of possible documents will be 
2^100, and it is not possible to get a probability table over the quantities P(D) and P(D|h) in last 
section. For this reason, in most complex applications, models are built which approximate P(D) and 
P(D|h) by means of a feature set. Common simplifications made in model building are independence 
assumptions (e.g., that the features are created independently, given h). The methods tested in this  
thesis build on extracting a feature set from the document and assuming that each feature occurs in 
a document with a probability that is dependent on the class h of the document but not on the other 
features of it. By selecting the features well it is often possible to get reliable statistical inferences 
using Bayes theorem. The independence assumption between features characterizes the Naive 
Bayes method. For a problem with N features and H hypotheses we only need the N*H probabilities 
P(f|h), whereas without the independency assumption we would need 2^N*H. But we also introduce 
inaccuracy, because in reality the features are not independent. 
. 

3.2 Bayesian Learning 
 
Bayes’ Theorem is the basis of Bayesian learning algorithms. It provides a method for calculating the 
probability of a hypothesis, based on its prior probability, the probability of observing data given the 
hypothesis, and the data itself. 
Some short hand notation first before we define the theorem. P(h) denotes the prior probability that 
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the hypothesis h holds, before we have observed the data. P(h) is based on any prior knowledge we 
have about the hypothesis. If we do not have such background knowledge we may assign the same 
prior probability to each candidate hypothesis (a non-informatic prior). P(D) denotes the prior 
probability that the data D holds given no prior knowledge about which hypothesis holds. P(D|h) is 
the probability that the data D holds in a world where the hypothesis h holds. P(h|D) is the 
probability that the hypothesis h holds given that the data D is observed. P(h) is independent of the 
observed data, whereas P(h|D) depends on it. In machine learning we are often interested to know 
the posterior probability P(h|D). P(h|D) is called the posterior probability of h, because it reflects on 
our confidence that h holds after the data is observed [1]. 
 Bayes’ theorem: 

   𝑃(ℎ|𝐷) =
𝑃(𝐷|ℎ)𝑃(ℎ)

𝑃(𝐷)
      (3.1)  

 
In many learning scenarios we need to calculate the most probable hypothesis ℎ ∈ 𝐻 in a set of 
hypothesis H. There can be several such most probable hypotheses in a set. Any such maximally 
probable hypothesis is called maximum a posteriori (MAP) hypothesis. We can calculate a MAP 
hypothesis by using Bayes’ theorem. We can say that ℎ𝑀𝐴𝑃 is a MAP hypothesis if 
 
  ℎ𝑀𝐴𝑃 ≡argmax

ℎ∈𝐻
𝑃(ℎ|𝐷) 

 

                                       =argmax
ℎ∈𝐻

𝑃(𝐷|ℎ)𝑃(ℎ)
𝑃(𝐷)

 

 
            = argmax

ℎ∈𝐻
𝑃(𝐷|ℎ)𝑃(ℎ)      (3.2) 

 
A common assumption is that we do not know what the individual prior probabilities P(h) have for 
values. In such cases they get equal values (i.e., they are uniformly distributed). In that case we only 
need to consider the term P(D|h). Any hypothesis that maximizes such term is called Maximum 
likelihood ( ℎ𝑀𝐿 ) hypothesis. When such cases occur, we can further simplify equation 3.2: 
 
  ℎ𝑀𝐿 ≡ argmax

ℎ∈𝐻
𝑃(𝐷|ℎ)      (3.3) 

 
It has been suggested that the posterior probability of ℎ𝑀𝐴𝑃 is used as a confidence measure for the 
prediction. This is a good idea if the probability model of the analysis is correct, but unfortunately 
the approximate nature of the probability model usually gives far too optimistic confidence estimate. 
So ℎ𝑀𝐴𝑃 is our best guess on the true value of h. But often we know that our guess is probably 
wrong. If we have posterior probabilities (0.26. 0.25, 0.25, 0.24) for a set of 4 hypothesis, then our 
best guess is the first hypothesis, but it is wrong 74% of the times. For posterior probabilities (0.99, 
0.004, 0.003, 0.002) on the other hand, the first hypothesis is also our best guess, but we are only 
wrong 1% of the time. In this project it was found that the statistical models used give reasonably 
good accuracy despite the approximate nature of the models used, but the posteriors did not give 
good confidence estimates. A new method, conformal prediction [13] developed by Vovk and others, 
promises to give valid confidence estimates even if inaccurate statistical models are used. 
Unfortunately there was not time to test this method. 
 

3.2.1 Naïve Bayes Classifier 

 
Naïve Bayes is a Bayes classifier which uses Bayes’ theorem with two simplifying assumptions: the 
independence between the attributes and position independence of attributes. Let us elaborate 
what does that mean. The instance to classify is often composed of many attributes (or features). As 
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we have seen before, to make use of Bayes theorem, we have to estimate the conditional probability 
P(x|h). Now the instance x consists of (or is described by) many attributes. Let us say it consists of a 
sequence of attributes (𝑎1…𝑎𝑛). Then to calculate the probability 𝑃(𝑎1…𝑎𝑛|ℎ) we need to take into 
account the interdependence between the attributes, in other words the joint probabilities of the 
attributes is to be included in the calculation. Then we have: 
 
 𝑃(𝑎1…𝑎𝑛|ℎ)  = 𝑃(𝑎1|ℎ) 𝑃(𝑎2|ℎ, 𝑎1)𝑃(𝑎3|ℎ, 𝑎1, 𝑎2)…𝑃(𝑎𝑛|ℎ, 𝑎1…𝑎𝑛−1).    (3.4) 
 
This is not practical, we can’t keep track of all past history [4], for then we have to calculate a lot of 
joint probabilities. Now Naïve Bayes is based on the simple assumption that attributes are 
independent of each other: 
 
 𝑃(𝑎1…𝑎𝑛|ℎ)  = 𝑃(𝑎1|ℎ) 𝑃(𝑎2|ℎ)𝑃(𝑎3|ℎ)…𝑃(𝑎𝑛|ℎ).    (3.5) 
 
Inserting (3.5) into (3.2) and using the product symbol we get: 
 

 ℎ𝑀𝐴𝑃 ≡ argmax
ℎ∈𝐻

𝑃(ℎ)∏ 𝑃(𝑎𝑖|ℎ)
𝑓𝑖

𝑖       (3.6) 

 
Inserting (3.5) into (3.3) and using the product symbol we get: 
 

 ℎ𝑀𝐿 ≡ 𝑎𝑟𝑔𝑚𝑎𝑥ℎ∈𝐻∏ 𝑃(𝑎𝑖|ℎ)
𝑓𝑖

𝑖       (3.7) 
 
 𝑓𝑖 is the number of times the attribute 𝑎𝑖  is found in the document. When NB is applied to 
document classification, the attributes are taken to be the words of the document. 
The second assumption that Naïve Bayes is based on states that attributes are position independent, 
i.e. if w is the word encountered at 𝑎5 and at 𝑎7, then 𝑃(𝑎5 = 𝑤|ℎ) = 𝑃(𝑎7 = 𝑤|ℎ). Since position 
does not matter (of course it matters, but we are assuming to simplify), one single probability is 
calculated for every word and hypothesis in the document to classify. This reduces the number of 
probabilities to calculate. 
 
The probability of a word w given hypothesis h is estimated from the training set: if the documents 
classified with h contain N words in total and f occurrences of word w, then P(w|h) can be estimated 
by the relative frequency f/N, which maximizes expected likelihood, or with (f+1)/(N+V), which 
minimizes expected (over posterior) squared error of the estimate (here V is the total number of 
words considered). The latter estimator is Laplace’s estimator.   
 

 

3.2.2 Improvements to Naive Bayes Classifier 

 
The naive Bayes classification method became popular in Artificial Intelligence during the 1980s 
when it gradually became obvious that the previously used methods based on logic held limited 
promise. The independency assumption is of course not satisfied in most applications, but the 
alternative makes it impossible to get good probability tables with reasonably large training data 
sets. It has often been observed that the method works better than one would expect. David Hand 
[2] has analyzed the naive Bayes method in detail, and found some explanations why the method 
works despite its weaknesses. Today it is however acknowledged that methods exist which are both 
more accurate and still useable with small training corpora. These methods make other 
independence assumptions than the naive Bayes method. They can be said to make less drastic 
independency assumptions. They are often described as special cases of graphical statistical models 
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[9]. 
 
A standard method to eliminate the NB assumption of attribute independence is to use the 
probability model of a Bayesian Network (BN). In this model, the attributes are made vertices of a 
directed acyclic graph and each attribute has a probability distribution that depends on values of the 
ancestor attributes in the graph. It is possible to learn the graph structure of a BN from training set, 
and typically a large training set will give a denser graph than a small one. A BN is optimized to 
predicting all attributes whereas in classification we are only interested in predicting the class 
attribute. For this reason Friedman et.al [9] invented the TAN classifier which has a tree structured 
graph targeting the class attribute. This classifier was found better than both BN and NB, but this 
result has been questioned by Madden et.al [8]. In document classification both BN and TAN 
classifiers are problematic because of the very large numbers of attributes. Rennie et.al [7] has 
studied some shortcomings of the NB method. One of these concerns the use of word counts. The 
assumption that words are generated independently in documents is far from true, since once a 
word has appeared in a document the probability that it will be repeated in the same document is 
much higher than the probability of its first occurrence. They propose replacing word counts fi in a 
document by the logarithmic transformation log(fi +1). In our experiment we will also test the binary 
transformation where all positive word counts are replaced by 1. Rennie remarks that the 
logarithmic transformation does not correspond to any statistical model. The binary transformation 
has the advantage (in theory) of corresponding to a statistical model. 
 

3.3 Character level n-gram 
 
Instead of using unigrams (single words) as NB does, we could use n-grams. We could use word n-
grams or character n-grams. N-grams are consecutive sequences of tokens, where the tokens are 
either words or characters. When the size of n is 1, we have unigrams (the traditional bag of words) 
which NB uses, but we will use n-grams with sizes greater than 1. Why use n-grams? As we have seen 
NB’s MAP and ML formulas were simplified to make the probability calculations tractable. But on the 
way we lost information in the form of context. N-gram reintroduces some of that lost information in 
the form of a short past history. We limit the history to fixed number of words or characters N: 
 

 𝑃(𝑤𝑘|𝑤1, … , 𝑤𝑘−1)   ≈  𝑃(𝑤𝑘|𝑤𝑘−𝑁+1, … , 𝑤𝑘−1)    (3.8) 
 
Bigram N=2 

 𝑃(𝑤𝑘|𝑤1, … , 𝑤𝑘−1)   ≈  𝑃(𝑤𝑘|𝑤𝑘−1)      (3.9) 

 𝑃(𝑤1, 𝑤2, … , 𝑤𝑘)  ≈  𝑃(𝑤1)𝑃(𝑤2|𝑤1)…𝑃(𝑤𝑘|𝑤𝑘−1)    (3.10) 
 
Trigram N=3 

 𝑃(𝑤𝑘|𝑤1, … , 𝑤𝑘−1)   ≈  𝑃(𝑤𝑘|𝑤𝑘−2, 𝑤𝑘−1)     (3.11) 

 𝑃(𝑤1, 𝑤2, … , 𝑤𝑘)  ≈  𝑃(𝑤1)𝑃(𝑤2|𝑤1)𝑃(𝑤3|𝑤1, 𝑤2)…𝑃(𝑤𝑘|𝑤𝑘−2, 𝑤𝑘−1)  (3.12) 
 
Equations 3.10 and 3.12 give probabilities of documents. In order to classify documents, we compute 
3.9 – 3.12 conditional on h. 
To compute ML estimates we need to calculate the individual n-gram probabilities. Both in NB and n-
gram, a large corpus is needed. The corpus is then divided into two parts, training set and test set. 
 
Bigram: 

 𝑃(𝑤1, 𝑤2) =
𝑓𝑟𝑒𝑞(𝑤1,𝑤2)

∑ 𝑓𝑟𝑒𝑞(𝑤1,𝑤)𝑤
       (3.13) 
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Trigram: 

 𝑃(𝑤1, 𝑤2, 𝑤3) =
𝑓𝑟𝑒𝑞(𝑤1,𝑤2,𝑤3)

∑ 𝑓𝑟𝑒𝑞(𝑤1,𝑤2,𝑤)𝑤
      (3.14) 

 
Character level n-grams are better than word level n-grams in many aspects. Word level n-grams 
increase dimensionality of the problem compared to character level n-grams [5]. There are ca. 
50 000 words in the English dictionary compared to 26 characters in the alphabet. If we have 

bigrams, it would generate 50 0002 = 2.5𝑥109 pairs of words, on the other hand 262 would 
generate only 676 pairs of characters. Another advantage of character level n-grams over word level 
n-grams is that character level n-grams are robust to spelling errors in comparison to word level n-
grams. The majority of the character level n-grams generated by a slightly misspelled word will be 
the same as the original (or correct) word. Another important aspect of character level n-grams is 
that they minimize the problem of sparse data. The sparse data problem arises when many n-grams 
have zero frequency. Because there are less character combinations compared to word 
combinations, the probability that there are character level n-grams with zero frequency is very low. 
One way to reduce the dimensionality is to remove all terms occurring a few times. Another way is to 
remove very common words such as “the”, ”often”, ”always” and so on. In this project work the later 
list, that is to say the common words are put together in a list called stop list. This list is then used to 
remove all common words occurring in the text that is to be classified. 
What is an ideal value of n in an n-gram? In other words, which n gives good results?  The results we 
get from the tests show that an n-gram of size 5 or 6 gives the best results. 

 

3.4 Smoothing 
 
The problem of sparse data we have mentioned in the previous section arises because if probabilities 
are estimated by frequencies, all probability mass is assigned to events in the training text [2]. Even if 
the training corpus is very large, it does not contain all possible unigrams, bigrams, trigrams, etc. The 
frequency based probability estimation will assign zero probability to an unseen unigram/n-gram in 
the test data. What is needed is to reserve some probability mass to unseen events.  Smoothing: 
distribute the probability mass to all possible events so that there is no zero probability. Zero 
probability is a problem because equations 3.6 and 3.7 are products and will result in zero if one 
factor is zero. 
 
There are many smoothing techniques and we will mention some of them. The most simple and 
oldest of them all is the one we will use and is called add-one or Laplace. 
Laplace: 
 

- Add one to all frequency counts (even unseen events). 

- V is the vocabulary of all unique events (unigrams in the case of traditional bag of words, 

bigrams, trigrams, etc in the case of n-grams). 

- N is the number of all events. 

- Re-estimate the probabilities. 

Unigrams: 

 𝑃(𝑤) =
𝑓𝑟𝑒𝑞(𝑤)+1

𝑁+𝑉
        (3.15) 

 
Bigrams: 

 𝑃(𝑤2|𝑤1) =
𝑓𝑟𝑒𝑞(𝑤1,𝑤2)+1

∑ 𝑓𝑟𝑒𝑞(𝑤1,𝑤)𝑤 +𝑉
       (3.16) 
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Laplace is enough when dealing with categorization of documents. But there are more 
sophisticated techniques in use such as Good-Turing, Katz Backoff, Kneser-Ney Smoothing 
among others.  
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4 Evaluation 
 
Which method gives the best results? How do we compare the results? So far we have worked with 
Naive Bayes using bag of words (unigrams of words) and character level n-grams. What we want to 
know is which method (NB with bag of words or character n-grams) is the best tool for document 
classification? We will do the comparison in the following way:  
Suppose we have four classes: A,B,C and D. Count the number of correctly classified documents in 
class A and divide the total number of documents in the class and we get the percent of correctly 
classified documents in class A. In the same way we calculate the number of documents in A 
incorrectly classified as class B, C and D. And we do the same for each class. This gives a confusion 
matrix 𝑝𝑖𝑗  with probability that a document is of class i and is found to have class j. The accuracy is 

the sum of diagonal elements in the confusion matrix. 
 
An experiment was conducted to check the relative performance of NB on words and n-gram on 
characters. Three transformations of word counts were tested: no transformation, logarithmic 
transformation, and binary transformation. The code for the classifiers was written in Java 8, and run 
on PC with AMD Turion 64 X2 CPU 1.61 GHZ. The test corpus was Mitchell’s 20newsgroups, the 
version published in [11], and the stop list proposed there was used. Most documents were posted 
in 1993. Only four of the groups (talk.politics.misc, talk.politics.guns, talk.politics.mideast, 
talk.religion.misc), were used, in order to get confusion matrices of reasonable size. The newsgroups 
have approximately 1000 documents each, and the first 700 were used for training set, the 
remainder for test sets. We needed an external library “org.apache.lucene.analysis” from apache to 
generate n-grams. For NB applications it took about a minute to execute, whereas n-gram 
applications needed about 4 minutes. 
 
There is another way of doing the evaluation using perplexity. Perplexity is defined as the probability 
of the entire test set normalized by the number of tokens [3]. Depending on whether we are using 
character level or word level n-grams, the number of tokens is then the number of characters 
respective the number of words in the test set.  
 

 𝑃𝑃𝑇(𝑇) =  𝑃(𝑤1, … , 𝑤𝑁)
−1/𝑁          (4.1) 

 
Using the chain rule and 3-gram we can write this as 
 

 𝑃𝑃𝑇(𝑇) =  √∏
1

𝑃(𝑤𝑖|𝑤𝑖−2, 𝑤𝑖−1)
𝑁
𝑖=1

𝑁
      (4.2) 

 
To compute perplexity we need to concatenate all test documents into one single document. 
 

4.1 Training and Test Data 
 
We are using the 20 newsgroups as training and test data. The 20 newsgroups is a collection of 
approximately 20 000 network newsgroups documents, partitioned into 20 different topics or 
categories. Every category contains nearly 1000 documents. Here is a list of the 20 categories, 
partitioned into subject matter: 
 



11 
 

comp.graphics 
comp.os.ms-windows.misc 
comp.sys.ibm.pc.hardware 
comp.sys.mac.hardware 
comp.windows.x 

rec.autos 
rec.motorcycles 
rec.sport.baseball 
rec.sport.hockey 

sci.crypt 
sci.electronics 
sci.med 
sci.space 

misc.forsale talk.politics.misc 
talk.politics.guns 
talk.politics.mideast 

talk.religion.misc 
alt.atheism 
soc.religion.christian 

 
We have used the version of this data set found in [11], with the recommended stop list. Note that 
there are several versions of this data set on the web. In some of these, some correction has been 
made, such as elimination of cross-posted entries, removal of names, etc. It should be noted that the 
class of the documents is quite weakly defined: it is just the newsgroup into which the author 
happens to post his document, and in long discussion threads authors have a tendency to deviate 
from the topic of the newsgroup. 
 

4.2 Test Results 
 
We split the training corpus into two parts, a training part and a test part. The training part is made 
of 70% of the documents, and the remaining 30% is the test part. We could randomly choose 30% of 
the documents in each category to be our test documents, but we make it easy for us and simply 
choose the first 700 documents as training documents and the last 300 as test documents. We 
trained an n-gram algorithm with maxGram=6. Also Naive Bayes algorithm with bag of words 
(unigram) was trained. Because features are assumed to be independent from each other, a class 
with more training data will be favored. A weight balancing can be done to tackle the problem. But 
here we will focus another problem for both Naïve Bayes and Ngram. Normally most text documents 
contain few words with high frequency and many words which appear once or few times. The 
phenomenon is known as heavy-tail. Distribution of word frequency is heavy-tailed. A solution to the 
problem is transforming word counts. One way to do that is taking the log2 of the word count: 
 

 𝑓𝑖  = 𝑙𝑜𝑔2(1 + 𝑓𝑖) 

 
𝑓𝑖 is the frequency of the 𝑖𝑡ℎ word in the document. This will reduce the dominance or the heavy 
contribution to the weights by few words with high frequency. It will map 0  0, 1  1, and down 
weights the heavy values. 
 
We will run tree different tests for each algorithm: a test with normal word counts, a test with 

𝑓𝑖  = 𝑙𝑜𝑔2(1 + 𝑓𝑖), and lastly a test with 𝑓𝑖 = 0 if word count = 0 and   𝑓𝑖 = 1 if word count ≥ 1. 

From the test results, we get the confusion-matrix, and from it we will calculate the accuracy. 
Accuracy is the overall correctness of the model and is calculated as the sum of correct classifications 
divided by the total number of classifications. 
 

4.2.1 NB results 

 
1)   fi=total number of word i in document. 
 



12 
 

 Pol.mis rel.mis pol.gun pol.mid 

talk.politics.misc 196 55 30 19 

talk.religion.misc 40 233 18 9 

talk.politics.guns 47 15 229 9 

talk.politics.mideast 63 8 1 228 

  
Accuracy = ( 196 + 233 + 229 + 228 ) / 1200 ≈ 73.83% 
 
2) fi = log2(1+fi). 
 

 Pol.mis rel.mis pol.gun pol.mid 

talk.politics.misc 212 47 26 15 

talk.religion.misc 38 244 12 6 

talk.politics.guns 40 11 243 6 

talk.politics.mideast 32 3 1 264 

 
Accuracy = ( 212 + 244 + 243 + 264 ) / 1200 = 963/1200 = 80.25% 
 
3) fi=0 if count=0, fi=1 if count>=1. 

 Pol.mis rel.mis pol.gun pol.mid 

talk.politics.misc 215 46 25 14 

talk.religion.misc 38 243 12 7 

talk.politics.guns 37 10 247 6 

talk.politics.mideast 19 3 1 277 

 
Accuracy = ( 215 + 243 + 247 + 277 ) / 1200 = 982/1200 ≈ 81.83% 
 

4.2.2 N-Gram Results 

 
1)6-gramCount, 5-gramCount: the number of 6-, respective 5-gram generated from training corpus. 
 

 pol.mid  pol.mis  rel.mis  polit.gun 

talk.politics.mideast 299 1 0 0 

talk.politics.misc 18 231 32 19 

talk.religion.misc 9 47 238 6 

talk.politics.guns 11 31 6 252 

 
Accuracy = ( 299 + 231 + 238 + 252 ) / 1200 = 1020/1200 = 85% 
 
2)6-gramCount = log2(1+6-gramCount), 5-gramCount = log2(1+5-gramCount)          
       

 Pol.mid pol.mis rel.mis pol.gun 

talk.politics.mideast 298 2 Null Null 

talk.politics.misc 17 218 43 22 

talk.religion.misc 4 32 258 6 

talk.politics.guns 5 25 7 263 

 
Accuracy = ( 298 + 218 + 258 + 263 ) / 1200 = 1037/1200 ≈ 86.42% 
 
3)6-gramCount = 1, 5-gramCount=1. 



13 
 

 

 Pol.mid  pol.mis  rel.mis  pol.gun  

talk.politics.mideast 282 16 1 1 

talk.politics.misc 17 204 49 30 

talk.religion.misc 5 21 265 9 

talk.politics.guns 1 19 12 268 

 
Accuracy = ( 282 + 204 + 265 + 268 ) / 1200 = 1019/1200 ≈ 84.92% 
 
 

4.2.3 Important Words 

 
For each word in the vocabulary, there is at least one class, for which it has a highest posterior 
probability. To see how important a word is for a class in its classification of a document, we take the 
difference between the maximum and minimum posterior probabilities. The quantity we get is a 
measure of the importance of the word to the class. These words are not necessarily the most 
common words in the class; rather they are words that are very rare or absent in the other classes. 
 
Here is a list of the 30 most important words of each class of the four classes in our evaluation: 
 
talk.politics.misc 
politics misc alt government president optilink mr clinton stephanopoulos cramer health legal br isc 
men sex american insurance article desy hallam dscomsa rochester states private apr make 
libertarian don gay 
 
talk.religion.misc 
religion talk god cmu abortion atheism jesus srv sandvik cs christian de cantaloupe morality frank 
objective apple sni net ap xref writes horus kent bible good origins netcom uk science  
 
talk.politics.guns 
guns gun stratus fbi firearms usa control weapons file law state batf fire cdt udel atf bill militia sw 
crime waco amendment usenet transfer stanford police arms colorado constitution ucsu  
 
talk.politics.mideast 
soc turkish culture israel mideast armenian israeli armenians jews soviet jewish org greek armenia 
turks arab turkey zuma people history argic serdar genocide bony soldiers mcgill rights human war 
sera 
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5 Discussion 
 
As can be seen from the test results, the enhanced algorithm with transformed word counts result in 
better accuracy. Are the results as expected for the NB algorithm? Definitely the results of the 
improved algorithm are close to what others have achieved.  But there is possibility that results 
could still be enhanced if we implemented all steps in the article, Rennie et.al [7]. Weight balancing 
is one of the steps discussed there. 
 
The list of important words consists of words which are very rare or totally absent in the other 
classes. These words tip the balance in favor of their class, in other words, they strengthen the 
weight which decides which class a document belongs to. We can see three classes of words: those 
that generally connect to the topic, words of current interest (like Clinton), and names of authors 
that tend to post in only one of the newsgroups. It seems clear that the set of important words 
change with time, and today we would see words as Obama, Iraq, Syria and IS. So constant tuning 
(retraining) is necessary in a long-lived application. 
 
The posterior probability distribution is too peaked to show true confidence in the classification. It 
gives a confidence greater than 99%, while the true value lies in the interval 73-85%.  Because of this, 
it is a bad approximation to the expected value of the real probability distribution. As a result the 
posterior probability distribution does not work well as a confidence measure for Bayesian 
classification. 
 
The results of ngram are better than results of all versions of NB. 
 
The transformed counts give clearly better results on NB, but not on n-gram. The binary 
transformation is a little better than the logarithmic one (on the test data), but for the n-gram the 
transformation does not give any obvious improvements. 
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