Seq2Seq

Anyway, to illustrate how to solve a sequence-to-
sequence problem using a seq2seq Encoder-
Decoder model, let’s create one that translates

English sentences into Spanish.

English ———-) Spanish

For example, Likewise, not all Spanish sentences are the
someone might say... same length, so we need something that can
generate different length sentences as output.

Lastly, the Spanish translation of an
English sentence can have a different

length than the original.
For example, the two word English ...translates to the one
sentence, Let’s go... word Spanish
sentence, Vamos.
English Sentences Spanish Sentences

Let’s go. Vamos.

So we need our seq2seq Encoder-
Decoder model to be able to handle
variable input and variable output lengths.

English Sentences ‘A Spanish Sentences

Let’'s go. — » Vamos.

Initial Long Updated Long
Term Memory Term Memory

Updated Short
Term Memory

Input.VaIue Input.VaIue

Instead, we use an
Embedding Layer to convert
the words into numbers.

-

/3

X -3.1 x0.3 x1.5 x 0.8
x04 | x-07 | x06 | x-02
Let's to go <EOS>

ALSO NOTE: In this example, we’re just
creating 2 embedding values per Token
instead of hundreds or thousands.

x 0.4 x -0.7 x 0.6

x 0.8

x -0.2

Let’s to go <EOS>

NOTE: To be clear, when we unroll the
LSTM and the Embedding Layer, we
reuse the exact same Weights and Biases
no matter how many times we unroll them.

7‘ T"r 7“ 7‘ 7tf 7«:
A /hk
11[0][0][o o/[o][1][0

let’s go

To keep things simple, we’ll just
add one additional LSTM cell to

/\/ this stage.

NOTE: Just like how both embedding
values are used as inputs to both
LSTM cells in the first layer...

...both outputs (the short-term memories, or hidden
states) from the each cell in the first layer are used as
inputs to both LSTM cells in the second layer.

In this example, we have 2
Layers of LSTMs, with 2
LSTM Cells per Layer.

Encoder
Layer 2

Encoder

let’s

go

AR

Anyway, the Context Vector is used to initialize
the long and short-term memories (the cell and
hidden states) in the LSTMs in the Decoder.

Encoder \'

Layer 2

let’s go

...and different Weights, which
result in different embedding
values for each Token.

ir vamos Yy <EOS>

...the Decoder starts with the
embedding values for the <EOS>
(end of sentence) Token.

Encoder
Layer 2

Q This Fully Connected Layer has 2
ANS inputs for the 2 values that come from
the LSTM cells in the top layer...

09| [60| | 20| | -02]
+090| [+037] [+-293 [+1.13 Z,E gif_; ‘/2_
A A e Ly
X -2.91 X 2.55
0] [0][0][1

<EOS>

vamos <EOS>

...and that means we translated El E El EI EI E' I]

the English sentence, Let's go, SoftMax SoftMax
into the correct Spanish
sentence.

0O(|O|(O]]|1 Of|1]{0]|O
<EOS> vamos

Attention Mechanism

...but if we had a bigger
input vocabulary with
1000’s of words...
...unrolling the LSTMs compresses
the entire input sentence into a
single context vector.

A7 é}/

-— v

A\

let’'s to «« <EOS> let's to ..« <EOS>

...then Don’t eat the delicious
looking and smelling pizza
turns into...

...Eat the delicious looking
and smelling pizza...

Encoder

To the
Decoder.

L R 2 R Fud 270 2 R Jed LR 2 2 Jui R 2 2 Sl R 2 R Jul R 2 2 Juf - R 22 2 R Jo8)

2
Vald

delicious looking

..and that The Main Idea of /\
Long, Short-Term Memory I | !
units is that they solve this ILong AAgo 4

problem by providing
separate paths for long and
short term memories.

Yesterday !

Today}—>|_/—>[Tomorrow

So the Main Idea of Attention is to add a
bunch of new paths from the Encoder to
the Decoder, one per input value, so that
each step of the Decoder can directly
access input values.

Don’t eat delicious looking and smelling pizza.

..however, the idea of
Attention is for each step
in the Decoder to have
direct access to the inputs.

Encoder
O R > > A '}'z s WO
3 zu a&“‘ ZJ &ﬂ L TES T
k!}i /7 }i 7 |
47:-\.&?\‘ /‘\\ --»._ %
LN
1110]101}]0 0 0 1 0

let’s go ir vamos y <EOS>

Cosine Similarity =

Sim. Score

A

n
Y AB,

| Rl

V T AW T, B

Sim. Score

(\If\' iy LSTMs
) Q And the output values from the
| 2 LSTM cells in the Decoder for
A = Encoder = Let's-» .076 0.75 the <EOS> token, are 0.91...
B = Decoder = <EQOS>-» 091 038 ¢

...and 0.38.
Sim. Score
r > P

0.75 4
Encoder -0.76 5.97]10-38]

OG> > > 5=

5 v R l

0 —rira '—»-J-) - » Ly
- e
11[0][0][0 ollollo]1

Cell #1 Cell #2

A = Encoder = Let’s -0.76 | 0.75
B = Decoder = <EOS>-» 091 0.38

...and we get -0.39.

> AB (-0.76 x0.91) + (0.75x0.38) Y

Cosine Similarity = = =-0.39
\/ Y A? \/ Y B? \J -0.762 + 0.752 4 0.912 + 0.382
1= 1=

LSTMs

A
K«' Cell #1 Cell #2

A = Encoder = Let's-» 076 0.75
B = Decoder = <EQOS>-» 091 0.38

Encoder -0.76

That

being said, a more

common way to calculate
similarity for Attention...

. |Similarity
”"A

= -0.39

0.91] 28!

Y gy, Ly

let’s

I \
-+
-

> ——)

I. '

3
.
——

<EOS>

LSTMs

Al et Anyway, cglculatung the Dot
~' Product is more common
A = Encoder = Let’s -0.76 0.75 than the Cosine Similarity
B = Decoder = <EQOS>-» 091 0.38 for Attention because...

Dot Pro
d
“et 23" AB; =(:0.76x0.91) + (0.75 x 0.38) = -0.41

(Al LSTMs

Product :

A = Encoder = Let’s-» _076 0.75 =1 4 (0 75 x 0. 38) = -0.41
B = Decoder = <EQS>-» 0.91 0.38
|-o.41 4

s”"‘ ...and we
—),%] x| get -0.41.
0.75
Encoder 0.76 0.97](0:38
0F—f—=> 1> — > T F—=> >
Zj zu azr | zx zu \ZE“ '
-!}i /S |
i 0 00 ollollol!l1

let’s <EOS>

LSTMs

20 A <<
Product :

A = Encoder = go-» | ‘a.01 | -0.01 =1 + (-0.01 x 0.38) = 0.01
B = Decoder = <EOS>-» 091 0.38
[001] +\/
sum
A ..and we
[r——— =3 [X get 0.01.
0.75 -0.01)—— — = x|
Encoder -0.76 0.01 0.91]10-38
- =
—_— iy ”I]'l_..) _J_)

Encoder

-0.01

I~-SoftMax Y

So we can think of
the output of the
SoftMax function

as a way to

determine what

percentage of each
mAm encoded input word
sum

we should use
when decoding.

0.01

N

»>$ X

/\ In this case, we'll
v use 40% of the first

encoded word,
r=-SoftMax-4 W Let’s...

[-0.41] A 0.01]
- ...and 60% of the

sum sum

A A second encoded
= . word, go...
S e g e) X

09122 , ...when the
—) > —— Decoder

.)’ —gfﬁi ﬂ 4 determines what
>RSI ghould be the first

% translated word.

These sums, which
combine the
r~SofiMax—=Y separate encodings
[-0.41] AJoo1] for both input
sum sum words, Let’s and
| go, relative to their
similarity to
<EOS>, are the
Attention values
for <€0S>.

1l
-0.01 A
—_t——‘_

Encoder

.
<LJ.Q)\

Encoder

0.75

-0.01

R-SoftMax =

fo] Aoor | Eelbs

sum

A
-.)ﬂ?

0.01

0.91

zzqu '
e — — — L

i

———

0.38

—>

sum

x| Now, all we need to
do to determine the
first output word is
plug the Attention
values into a Fully
Connected
Layer...

<EOS>

Encoder

R-SoftMax-?!
Foa1] A [oo1]
sum sum
A
=3 P
0.75 -0.01 I%___, > [X
-0.76 0.01 0.91|9-38 —

-3] |0.3

o

0.4

..and plug the
encodings for
<EOS> into the
same Fully
Connected
Layer...

0.75

Encoder

K ;

R-SoﬁMax-?!

Foa1] A [oo1]

sum sum

-0.76

T iTE aZE&

o—'===E1—_'JL>

>

-0.01

0.01

vamos

[o] (] [o] [e]

SoftMax
711471121 1-2

-.3| |0.3| |0.9] 0.4
A A

L———.-J

..and run the
output values
through a SoftMax
function to select
the first output
word, vamos.

.~ Now, because the

| output was not the
<EOS> token, we
need to unroll the

Embedding layer and
the LSTMs in the

Decoder...

<EOS> ir vamosy <EOS>

@, N - _ > <EOS>
~1©5) | ...and the second i E . [o][o][o][1]
output from the h [>l SoftMax
Decoder is <EOS> 5| [1.4] [-2] [7.4
SO we are done r=-SoftMax -y
decoding. A -6| 0.6/ |-.8] 0.9
sum sum A A
S Rk
0.75 -0.01 - =3 [>
Encoder -0.76 0.01 o7e| 1091
I
05— > —> = — > —> > ——>
Azmazgﬂ ﬂZkﬁaZE LZI.Z,HMZE& l
o e — > eyt ey
% -
0 0 1 0

- —— f - ...but now, each
'In summary, when we‘ ‘ r |

,the Encoder step of decoding
add Attentmn to a pretty much Stays has access to the
basic Encoder- e
the same... individual

each input word...

- ...and we use similarity
. scores and the SoftMax
function to determine what
percentage of each encoded
input word should be used
to help predict the next
output word.

