|  | Course: <br> Program: <br> Duration: <br> Submit Date: <br> Type: <br> Exam: | Parallel and Distributed Computing BSCS \& BSDS <br> 7 Days <br> 02-Apr-2024 <br> Announced <br> Assignment 03 | Course Code: <br> Semester: <br> Total Marks: <br> Weight <br> Page(s): <br> Section: | CS-3006 <br> Spring 2024 <br> 30 <br> 1.25\% <br> 3 |
| :---: | :---: | :---: | :---: | :---: |

Name \& Roll No:

Submission Mode \& Time: Handwritten solutions on A4 papers to be submitted during the lecture. You must have to write all the steps involved in the solution. State your answers in the readable handwriting and with the help of diagrams, where necessary.

## Question \# 1:

Provide the output of the given code considering compiler will generate maximum 4 threads if dynamic adjustment is enabled.

```
workers = omp_get_max_threads(); //can use num_procs
```

printf ("\%d maximum allowed threads\n", workers);
printf ("Total number of allocated cores are:\%d\n", omp_get_num_procs());
omp_set_dynamic(1); // dynamic adjustment enabled
omp_set_num_threads(8);
printf ("Total number of requested when dynamic is true are:\%d\n", 1);
\#pragma omp parallel \{
\#pragma omp single nowait
printf("Total threads in parallel region1=\%d:\n", omp_get_num_threads());
\#pragma omp for
for ( $\mathbf{i}=\mathbf{0} ; \mathbf{i}<$ mult $; \mathbf{i + +}$ )
\{a = complex_func();\}
\}
omp_set_dynamic(0); // dynamic adjustment disabled

```
omp_set_num_threads(6);
```

printf("Total number of requested when dynamic is false are:\%d $\mathbf{n}$ ", 6);
\#pragma omp parallel
\{
\#pragma omp single nowait
printf("Total threads in parallel region2=\%d:\n", omp_get_num_threads());
\#pragma omp for
for ( $\mathbf{i}=\mathbf{0} \mathbf{;} \mathbf{i}$ < mult; $\mathbf{i + +}$ )
\{a = complex_func(); $\}$
\}
Output:

Question \# 2:
[8 marks, CLO \# 3]
Perform all-to-all broadcast on 8 nodes ring structure. Write all the seven communication steps and the final state.

Question \# 3:
Perform prefix-sum operation on 3-D hypercube structure. Write all the steps involved and final state.

Assume we have a 4*4 matrix with the following values:
2468
1357
10121416
11131517
Assume each row is stored at different processes, row $1(2,4,6,8)$ is stored at process P0, row 2 at P1, row 3 at P2, and row $4(11,13,15,17)$ at P3. We want to apply a matrix transpose. Describe:
(i) The operation that needs to take place
(ii) Draw the message originating from process PO and show what happens at each step with this message

(iii) Draw the message originating from process P3 and show what happens at each step with this message


