

Introduction

https://jsmastery.pro JavaScript Mastery

Welcome to the Docker Mastery Guide

Whether you're a novice exploring the world of Docker or a
seasoned pro seeking a quick reference, you're in the right
place. This comprehensive guide is designed to address
both beginners and experienced users, offering a thorough
exploration of essential Docker commands and concepts.

Explore creating and managing Docker images,
understand Container management, and master
Dockerfile syntax, dive into Docker Compose complexities,
and learn the latest features like Docker Compose Watch
with clear explanations, step-by-step guidance, and
practical illustrative examples.

With all the necessary commands and concepts, this guide
will help you get started with Docker real quickly. Go ahead
and give it a read!

Happy Dockering!

...before you go

https://jsmastery.pro JavaScript Mastery

While our Docker Mastery Guide is fantastic for getting a
grip on Docker and taking that first step into DevOps,
imagine how much cooler it would be to apply that
knowledge to the latest tech stack like Next.js and work on
big projects showcasing Docker's true power.

If you're eager to dive deep into something this specific
and build substantial projects, our

has got you covered.
special course on

Next.js

The Ultimate

Next 14 Course

It teaches everything from the ground up, providing a
hands-on experience that goes beyond just Docker.

Check it out and take your skills to the next level

Docker

Image

Docker Image

https://jsmastery.pro JavaScript Mastery

1. Build an image from a Dockerfile:

2. List all local images:

3. Pull an image from Docker Hub:

Terminal

docker -t build image_name path_to_dockerfile

Example

docker -t build myapp .

Terminal

docker images

Example

docker lsimage

Terminal

docker pull image_name:tag

Example

docker pull nginx:latest

Docker Image

https://jsmastery.pro JavaScript Mastery

4. Remove a local image:

5. Tag an image:

Terminal

docker rmi image_name:tag

Example

docker rmi myapp:latest

Terminal

docker rm [image_name/image_id]

Example

docker rm fd484f19954f

Terminal

docker tag source_image:tag new_image:tag

Example

docker tag myapp:latest myapp:v1

Or

Docker Image

https://jsmastery.pro JavaScript Mastery

6. Push an image to Docker Hub:

7. Inspect details of an image:

8. Save an image to a tar archive:

Terminal

docker push image_name:tag

Example

docker push myapp:v1

Terminal

docker inspect image image_name:tag

Example

docker inspect image myapp:v1

Terminal

docker -osave image_name.tar image_name:tag

Example

docker -o save myapp.tar myapp:v1

Docker Image

https://jsmastery.pro JavaScript Mastery

9. Load an image from a tar archive:

10. Prune unused images:

Terminal

docker -i load image_name.tar

Example

docker -i load image_name.tar

Terminal

docker pruneimage

Docker

Container

Docker Container

https://jsmastery.pro JavaScript Mastery

1. Run a container from an image:

2. Run a named container from an image:

3. List all running containers:

Terminal

docker run container_name image_name

Example

docker run myapp

Terminal

docker --name run container_name image_name:tag

Example

docker --name run my_container myapp:v1

Terminal

docker ps

Docker Container

https://jsmastery.pro JavaScript Mastery

5. Stop a running container:

6. Start a stopped container:

Terminal

docker stop container_name_or_id

Example

docker stop my_container

Terminal

docker start container_name_or_id

Example

docker start my_container

4. List all containers (including stopped ones):
Terminal

docker -aps

Docker Container

https://jsmastery.pro JavaScript Mastery

7. Run container in interactive mode:

8. Run container in interactive shell mode

9. Remove a stopped container:

Terminal

docker -itrun container_name_or_id

Example

docker -it run my_container

Terminal

docker -it run container_name_or_id sh

Example

docker -it run my_container sh

Terminal

docker rm container_name_or_id

Example

docker rm my_container

Docker Container

https://jsmastery.pro JavaScript Mastery

10. Remove a running container (forcefully):

11. Inspect details of a container:

 View container logs:

Terminal

docker -frm container_name_or_id

Example

docker -f rm my_container

Terminal

docker inspect container_name_or_id

Example

docker inspect my_container

Terminal

docker logs container_name_or_id

Example

docker logs my_container

Docker Container

https://jsmastery.pro JavaScript Mastery

13. Pause a running container:

14. Unpause a paused container:

Terminal

docker pause container_name_or_id

Example

docker pause my_container

Terminal

docker unpause container_name_or_id

Example

docker unpause my_container

Docker

Volumes

and Network

Docker Volumes and Network

https://jsmastery.pro JavaScript Mastery

1. Create a named volume:

2. List all volumes:

Terminal

docker createvolume volume_name

Example

docker createvolume my_volume

Terminal

docker lsvolume

Volumes:

Docker Volumes and Network

https://jsmastery.pro JavaScript Mastery

4. Remove a volume:
Terminal

docker rm volume volume_name

Example

docker rm volume my_volume

3. Inspect details of a volume:
Terminal

docker inspect volume volume_name

Example

docker inspect volume my_volume

Docker Volumes and Network

https://jsmastery.pro JavaScript Mastery

5. Run a container with a volume (mount):

6. Copy files between a container and a volume:

Terminal

docker --name -vrun container_name volume_name:/path/in/
container image_name:tag

Example

docker --name -vrun my_container my_volume:/app/data myapp:v1

Terminal

docker cp local_file_or_directory container_name:/path/in/
container

Example

docker cp data.txt my_container:/app/data

Docker Volumes and Network

https://jsmastery.pro JavaScript Mastery

2. List all networks:
Terminal

docker lsnetwork

Network (Port Mapping):

1. Run a container with port mapping:
Terminal

docker --name -prun container_name host_port:container_port
image_name

Example

docker --name -prun my_container 8080:80 myapp

Docker Volumes and Network

https://jsmastery.pro JavaScript Mastery

4. Create a user-defined bridge network:
Terminal

docker create network network_name

Example

docker create network my_network

5. Connect a container to a network:
Terminal

docker connectnetwork network_name container_name

Example

docker connect network my_network my_container

3. Inspect details of a network:
Terminal

docker inspectnetwork network_name

Example

docker inspectnetwork bridge

Docker Volumes and Network

https://jsmastery.pro JavaScript Mastery

6. Disconnect a container from a network:
Terminal

docker disconnectnetwork network_name container_name

Example

docker disconnect network my_network my_container

Docker

Compose

Docker Compose

https://jsmastery.pro JavaScript Mastery

1. Create and start containers defined in a docker-

 compose.yml file:

2. Stop and remove containers defined in a docker-

 compose.yml file:

Terminal

docker upcompose

Terminal

docker downcompose

This command reads the docker-compose.yml file and
starts the defined services in the background.

This command stops & removes the containers, networks,
and volumes defined in the docker-compose.yml file.

Docker Compose

https://jsmastery.pro JavaScript Mastery

3. Build or rebuild services:

4. List containers for a specific Docker Compose

 project:

Terminal

docker buildcompose

Terminal

docker pscompose

This command builds or rebuilds the Docker images for the
services defined in the docker compose.yml file.

This command lists the containers for the services defined
in the docker-compose.yml file.

Docker Compose

https://jsmastery.pro JavaScript Mastery

5. View logs for services:

6. Scale services to a specific number of containers:

Terminal

docker logscompose

This command shows the logs for all services defined in the
docker-compose.yml file.

Terminal

docker up -d --scale compose
service_name=number_of_containers

Example

docker up -d --scale compose web=3

Docker Compose

https://jsmastery.pro JavaScript Mastery

7. Run a one-time command in a service:

8. List all volumes:

Terminal

docker run service_name compose command

Example

docker run web npm compose install

Terminal

docker lsvolume

Docker Compose creates volumes for services. This
command helps you see them.

Docker Compose

https://jsmastery.pro JavaScript Mastery

9. Pause a service:

10. Unpause a service:

Terminal

docker pause service_namevolume

Terminal

docker unpause service_namevolume

This command pauses the specified service.

This command unpauses the specified service.

11. View details of a service:
Terminal

docker ps service_namecompose

Provides detailed information about a specific service.

Latest

Docker

Latest Docker

https://jsmastery.pro JavaScript Mastery

1. Initialize Docker inside an application

2. Watch the service/container of an application

Terminal

docker init

Terminal

docker watchcompose

It watches build context for service and rebuild/refresh
containers when files are updated

Dockerfile

Reference

Dockerfile Reference

https://jsmastery.pro JavaScript Mastery

What is a Dockerfile?

A Dockerfile is a script that contains instructions for
building a Docker image. It defines the base image, sets up
environment variables, installs software, and configures
the container for a specific application or service.

Dockerfile Syntax

Specifies the base image for the Docker image.

FROM:

FROM image_name:tag

Example

FROM ubuntu:20.04

Dockerfile Reference

https://jsmastery.pro JavaScript Mastery

Sets the working directory for subsequent instructions.

WORKDIR:

Copies files or directories from the build context to the
container.

COPY:

WORKDIR /path/to/directory

Example

WORKDIR /app

COPY host_source_path container_destination_path

Example

COPY . .

Dockerfile Reference

https://jsmastery.pro JavaScript Mastery

Executes commands in the shell.

RUN:

Sets environment variables in the image.

ENV:

RUN command1 command2&&

Example

RUN apt-get update apt-get install -y curl&&

ENV KEY=VALUE

Example

ENV NODE_VERSION=14

Dockerfile Reference

https://jsmastery.pro JavaScript Mastery

Informs Docker that the container listens on specified
network ports at runtime.

EXPOSE:

Provides default commands or parameters for an
executing container.

Or,

CMD:

EXPOSE port

Example

EXPOSE 8080

CMD ["executable","param1","param2"]

Example

CMD ["npm", "start"]

Dockerfile Reference

https://jsmastery.pro JavaScript Mastery

Or,

Configures a container that will run as an executable.

ENTRYPOINT:

CMD executable param1 param2

Example

CMD npm run dev

ENTRYPOINT ["executable","param1","param2"]

Example

ENTRYPOINT ["node", "app.js"]

ENTRYPOINT executable param1 param2

Example

ENTRYPOINT node app.js

Dockerfile Reference

https://jsmastery.pro JavaScript Mastery

Defines variables that users can pass at build-time to the
builder with the docker build command.

ARG:

Creates a mount point for external volumes or other
containers.

VOLUME:

ARG VARIABLE_NAME=default_value

Example

ARG VERSION=latest

VOLUME /path/to/volume

Example

VOLUME /data

Dockerfile Reference

https://jsmastery.pro JavaScript Mastery

Adds metadata to an image in the form of key-value pairs.

LABEL:

Specifies the username or UID to use when running the
image.

USER:

LABEL key="value"

Example

LABEL version="1.0" maintainer="Adrian"

USER user_name

Example

USER app

Dockerfile Reference

https://jsmastery.pro JavaScript Mastery

Similar to COPY, but with additional capabilities (e.g.,
extracting archives).

Copies files or directories and can extract tarballs in the
process.

ADD:

ADD source_path destination_path

Example

ADD ./app.tar.gz /app

Dockerfile Example

https://jsmastery.pro JavaScript Mastery

Use an official Node.js runtime as a base image

FROM

WORKDIR

COPY

RUN

COPY

EXPOSE

ENV

CMD

 node:20-alpine

 /app

 package*.json ./

 npm install

 . .

 8080

 NODE_ENV=production

 node app.js

Set the working directory to /app

Copy package.json and package-lock.json to the
working directory

Install dependencies

Copy the current directory contents to the container
at /app

Expose port 8080 to the outside world

Define environment variable

Run app.js when the container launches

Docker

Compose

File Reference

Docker Compose File Reference

https://jsmastery.pro JavaScript Mastery

What is a Docker Compose File?

A Docker Compose file is a YAML file that defines a multi-
container Docker application. It specifies the services,
networks, and volumes for the application, along with any
additional configuration options.

Docker Compose File Syntax

Specifies the version of the Docker Compose file format.

version:

version: '3.8'

Example:

Docker Compose File Reference

https://jsmastery.pro JavaScript Mastery

Defines the services/containers that make up the
application.

services:

services

 web
 image

:
:

: nginx:latest

Example:

Configures custom networks for the application.

networks:

networks
 my_network

 driver

:

:

: bridge

Example:

Docker Compose File Reference

https://jsmastery.pro JavaScript Mastery

Defines named volumes that the services can use.

volumes:

volumes
 my_volume

:

:

Example:

Sets environment variables for a service.

environment:

environment:

 - NODE_ENV=production

Example:

Docker Compose File Reference

https://jsmastery.pro JavaScript Mastery

Specifies dependencies between services, ensuring one
service starts before another.

depends_on:

depends_on

:

 - db

Example:

Maps host ports to container ports.

ports:

ports:

 - "8080:80"

Example:

Docker Compose File Reference

https://jsmastery.pro JavaScript Mastery

Configures the build context and Dockerfile for a service.

build:

build
 context

 dockerfile

:

:

:
.

Dockerfile.dev

Example:

Mounts volumes from another service or container.

volumes_from:

volumes_from

:

 - service_name

Example:

Docker Compose File Reference

https://jsmastery.pro JavaScript Mastery

Overrides the default command specified in the Docker
image.

command:

command : ["npm", "start"]

Example:

Docker Compose File Example

https://jsmastery.pro JavaScript Mastery

version: '3.8'

Define services for the MERN stack

 # MongoDB service

 :

 -
 :

 - :
 :

 :

 :

 # Node.js (Express) API service

 :

 :

			# Specify the build context for the API service

 :

			# Specify the Dockerfile for building the API service

 :

services

mongo
image
ports

volumes
mongo_data

environment
MONGO_INITDB_ROOT_USERNAME
MONGO_INITDB_ROOT_PASSWORD

api
build

context

dockerfile

:

:
: mongo:latest

"27017:27017"

/data/db

admin
admin

./api

Dockerfile

Here's a simple Docker Compose file example for a web
and database service:

Docker Compose File Example

https://jsmastery.pro JavaScript Mastery

 :

 -

		

		# Ensure the MongoDB service is running before starting
the API

 :

 -

		 :

 :

		 :

 -

 # React client service

 :

 :

			# Specify the build context for the client service

 :

			# Specify the Dockerfile for building the client service

 :

		 :

 -

ports

depends_on

environment
MONGO_URI

networks

client
build

context

dockerfile

ports

"5000:5000"

mongo

mongodb://admin:admin@mongo:27017/
mydatabase

mern_network

./client

Dockerfile

"3000:3000"

Docker Compose File Example

https://jsmastery.pro JavaScript Mastery

	# Ensure the API service is running before starting the
client

		 :

 -

	

 :

 -

Define named volumes for persistent data

:

 :

Define a custom network for communication between
services

:

 :

depends_on

networks

volumes
mongo_data

networks
mern_network

api

mern_network

The End

https://jsmastery.pro JavaScript Mastery

Congratulations on reaching the end of our guide! But hey,
learning doesn't have to stop here.

If you're craving a more personalized learning experience
with the guidance of expert mentors, we have something
for you — .Our Masterclass

JSM ExperienceMasterclass

In this special program, we do not just teach concepts –
offering hands-on training, workshops, one on one with
senior mentors, but also help you build production-ready
applications in an industry-like environment, working
alongside a team and doing code reviews with mentors. It's
almost a real-world experience simulation, showcasing
how teams and developers collaborate.

If this sounds like something you need, then don’t stop
yourself from leveling up your skills from junior to senior.

Keep the learning momentum going. Cheers!

