
P, NP, NP-Hard & NP-complete 
problems

Prof. Shaik Naseera
Department of CSE
JNTUACEK, Kalikiri

1



Objectives
• P, NP, NP-Hard and NP-Complete
• Solving 3-CNF Sat problem
• Discussion of Gate Questions

2



Types of Problems
• Trackable
• Intrackable
• Decision
• Optimization

3

Trackable : Problems that can be solvable 
in a reasonable(polynomial) time.
Intrackable : Some problems are 
intractable, as they grow large, we are 
unable to solve them in reasonable time.



Tractability
• What constitutes reasonable time? 

– Standard working definition: polynomial time
– On an input of size n the worst-case running 

time is O(nk) for some constant k
– O(n2), O(n3), O(1), O(n lg n), O(2n), O(nn), O(n!)
– Polynomial time: O(n2), O(n3), O(1), O(n lg n) 
– Not in polynomial time: O(2n), O(nn), O(n!)

• Are all problems solvable in polynomial 
time?
– No: Turing’s “Halting Problem” is not solvable 

by any computer, no matter how much time is 
given.

4



Optimization/Decision Problems

• Optimization Problems
– An optimization problem is one which asks, 

“What is the optimal solution to problem X?”
– Examples:

• 0-1 Knapsack
• Fractional Knapsack
• Minimum Spanning Tree

• Decision Problems
– An decision problem is one with yes/no answer
– Examples:

• Does a graph G have a MST of weight  W?

5



Optimization/Decision Problems

• An optimization problem tries to find an optimal solution
• A decision problem tries to answer a yes/no question
• Many problems will have decision and optimization versions

– Eg: Traveling salesman problem
• optimization: find hamiltonian cycle of minimum 

weight
• decision: is there a hamiltonian cycle of weight  k

6



P, NP, NP-Hard, NP-Complete
-Definitions

7



The Class P

P: the class of problems that have polynomial-time 
deterministic algorithms.  
– That is, they are solvable in O(p(n)), where p(n) is a 

polynomial on n
– A deterministic algorithm is (essentially) one that always 

computes the correct answer

8



Sample Problems in P
• Fractional Knapsack
• MST 
• Sorting
• Others?

9



The class NP

NP: the class of decision problems that are solvable in 
polynomial time on a nondeterministic machine (or with 
a nondeterministic algorithm)
– (A determinstic computer is what we know)
– A nondeterministic computer is one that can “guess” the right 

answer or solution  
• Think of a nondeterministic computer as a parallel 

machine that can freely spawn an infinite number of 
processes

• Thus NP can also be thought of as the class of 
problems  “whose solutions can be verified in polynomial time” 

• Note that NP stands for “Nondeterministic 
Polynomial-time”

10



Sample Problems in NP
• Fractional Knapsack
• MST 
• Others?

– Traveling Salesman
– Graph Coloring
– Satisfiability (SAT)

• the problem of deciding whether a given 
Boolean formula is satisfiable

11



P And NP Summary

• P = set of problems that can be solved in 
polynomial time
– Examples: Fractional Knapsack, …

• NP = set of problems for which a solution can be 
verified in polynomial time
– Examples: Fractional Knapsack,…, TSP, CNF 

SAT, 3-CNF SAT
• Clearly P  NP
• Open question: Does P = NP?

– P ≠ NP



NP-hard
• What does NP-hard mean?

– A lot of times you can solve a problem by reducing it to 
a different problem. I can reduce Problem B to 
Problem A if, given a solution to Problem A, I can easily 
construct a solution to Problem B. (In this case, 
"easily" means "in polynomial time.“).

• A problem is NP-hard if all problems in NP 
are polynomial time reducible to it, ...

•
Every problem in NP is reducible to HC in 
polynomial time. Ex:- TSP is reducible to 
HC.  

13Example: lcm(m, n) = m * n / gcd(m, n), 
B A

Ex:- Hamiltonian Cycle



NP-complete problems
• A problem is NP-complete if the problem is 

both
– NP-hard, and
– NP.



Reduction

• A problem R can be reduced to another 
problem Q if any instance of R can be 
rephrased to an instance of Q, the 
solution to which provides a solution to the 
instance of R
– This rephrasing is called a transformation

• Intuitively: If R reduces in polynomial time 
to Q, R is “no harder to solve” than Q

• Example: lcm(m, n) = m * n / gcd(m, n), 
lcm(m,n) problem is reduced to gcd(m, n) 

problem



NP-Hard and NP-Complete

• If R is polynomial-time reducible to Q, 
we denote this R p Q

• Definition of NP-Hard and NP-
Complete: 
– If all problems R  NP are polynomial-time

reducible to Q, then Q is NP-Hard
– We say Q is NP-Complete if Q is NP-Hard 

and Q  NP
• If R p Q and R is NP-Hard, Q is also 

NP-Hard 



17



Summary
• P is set of problems that can be solved by a 

deterministic Turing machine in Polynomial 
time.

• NP is set of problems that can be solved by 
a Non-deterministic Turing Machine in 
Polynomial time. P is subset of NP (any 
problem that can be solved by 
deterministic machine in polynomial time 
can also be solved by non-deterministic 
machine in polynomial time) but P≠NP.

18



• Some problems can be translated into one 
another in such a way that a fast solution to 
one problem would automatically give us a fast 
solution to the other.

• There are some problems that every single 
problem in NP can be translated into, and a fast 
solution to such a problem would automatically 
give us a fast solution to every problem in NP. 
This group of problems are known as NP-
Complete. Ex:- Clique

• A problem is NP-hard if an algorithm for solving 
it can be translated into one for solving any NP-
problem (nondeterministic polynomial time) 
problem. NP-hard therefore means "at least as 
hard as any NP-problem," although it might, in 
fact, be harder.

19



First NP-complete problem—
Circuit Satisfiability (problem 

definition)
• Boolean combinational circuit

– Boolean combinational elements, wired 
together

– Each element, inputs and outputs (binary)
– Limit the number of outputs to 1.
– Called logic gates: NOT gate, AND gate, OR 

gate.
– true table: giving the outputs for each 

setting of inputs
– true assignment: a set of boolean inputs.
– satisfying assignment: a true assignment 

causing the output to be 1.
20



Circuit Satisfiability 
Problem: definition

• Circuit satisfying problem: given a boolean
combinational circuit composed of AND, 
OR, and NOT, is it stisfiable?

• CIRCUIT-SAT={<C>: C is a satisfiable
boolean circuit}

• Implication: in the area of computer-aided 
hardware optimization, if a subcircuit
always produces 0, then the subcircuit can 
be replaced by a simpler subcircuit that 
omits all gates and just output a 0.

21



22

Two instances of circuit satisfiability problems



Solving circuit-satisfiability
problem

• Intuitive solution: 
– for each possible assignment, check 

whether it generates 1.
– suppose the number of inputs is k, then 

the total possible assignments are 2k.  
So the running time is (2k). When the 
size of the problem is (k), then the 
running time is not polynomial.

23



24

Example of reduction of CIRCUIT-SAT to SAT
= x10(x10(x7 x8 x9))

(x9(x6  x7))
(x8(x5  x6))
(x7(x1 x2 x4))
(x6x4))
(x5(x1  x2))
(x4x3)

REDUCTION: = x10= x7 x8 x9=(x1 x2 x4)  (x5  x6) (x6  x7)
=(x1 x2 x4)  ((x1  x2) x4) (x4  (x1 x2 x4))=….



Conversion to 3 CNF
• The result is that in ', each clause has at most 

three literals.
• Change each clause into conjunctive normal form as 

follows:
– Construct a true table, (small, at most 8 by 4)
– Write the disjunctive normal form for all true-table items 

evaluating to 0
– Using DeMorgan law to change to CNF.

• The resulting '' is in CNF but each clause has 3 or 
less literals.

• Change 1 or 2-literal clause into 3-literal clause as 
follows:

– If a clause has one literal l, change it to (lpq)(lpq)
(lpq) (lpq).

– If a clause has two literals (l1 l2), change it to (l1 l2 p) 
(l1 l2 p).

25



26

Example of a polynomial-time reduction:

We will reduce the 

3CNF-satisfiability problem

to the

CLIQUE problem



27

3CNF formula:

)()()()( 654463653321 xxxxxxxxxxxx 

Each clause has three literals

3CNF-SAT ={       :       is a satisfiable 
3CNF formula}

w w
Language:

literal

clause



28

A 5-clique in graph

CLIQUE = {            :  graph       
contains a    -clique}

 kG, G
k

G

Language:



29

)()()()( 432321421421 xxxxxxxxxxxx 

Clause 2

Clause 1

Clause 3

1x

2x

1x 2x 4x

1x

2x

3x

2x
4x

4x

3x

Transform formula to graph. 
Example:

Clause 4

Create Nodes:



30

)()()()( 432321421421 xxxxxxxxxxxx 

1x

2x

1x 2x 4x

1x

2x

2x
4x

4x

3x

3x

Add link from a literal     to a literal in every
other clause, except the complement







31

)()()()( 432321421421 xxxxxxxxxxxx 

1x

2x

1x 2x 4x

1x

2x

3x

2x
4x

4x

3x

Resulting Graph



32

1
0
0
1

4

3

2

1









x
x
x
x

1)()()()( 432321421421  xxxxxxxxxxxx

1x

2x

1x 2x 4x

1x

2x

3x

2x
4x

4x

3x

The formula is satisfied if and only if
the Graph has a 4-clique
The objective is to find a clique of size 4, 
where 4 is the number of clauses. 

End of Proof



33

Theorem:
If: a. Language       is NP-complete

b. Language       is in NP
c. is polynomial time reducible to

A

A B
B

Then: is NP-completeB



34

Corollary: CLIQUE is NP-complete

Proof:

b. CLIQUE is in NP
c. 3CNF-SAT is polynomial reducible to CLIQUE

a. 3CNF-SAT is NP-complete

Apply previous theorem with
A=3CNF-SAT and       B=CLIQUE

(shown earlier)



Previous Gate Questions

35



36

Q. No. 1



37

Q. No. 2



38

Q. No. 3



39

Q. No. 4



40

Q. No. 5



41

Q. No. 6



42

Q. No. 7



43

Q. No. 8



44

Explanation: The problem of finding 
whether there exist a Hamiltonian 
Cycle or not is NP Hard and NP 
Complete Both.
Finding a Hamiltonian cycle in a 
graph G = (V,E) with V divisible by 3 
is also NP Hard.

Q. No. 10

There exist: search problem



45

Q. No. 11



Thank You

46


