
Object Oriented Analysis and Design Design Class Diagrams

Compiled by Roshan Chitrakar 1 of 6

DESIGN CLASS DIAGRAMS

1. Introduction
With the completion of interaction diagrams for use-case realizations, it is possible to identify the
specification for the software classes (and interfaces) that participate in the software solution, and
annotate them with design details, such as methods.

1.1. When to Create DCDs

DCDs are usually created in parallel with interaction diagrams. Many classes, method names and
relationships may be sketched out very early in design by applying responsibility assignment
patterns, pr ior to the drawing of interaction diagrams. It is possible and desirable to do a little
interaction diagramming, then update the DCDs, then extend the interaction diagrams some more,
and so on.

1.2. Example DCD

Here is an example of DCD with Register and Sale. The diagram consists of the methods of each
class, attribute type information, and attribute visibility and navigation between objects along with
the basic associations and attributes, which are created during Domain Modeling.

1.3. Terminology related to DCD

A design class diagram (DOD) illustrates the specifications for software classes and interfaces (for
example, Java interfaces) in an application. Typical information includes;

? classes, associations and attributes

? interfaces, with their operations and cons tants

? methods

? attribute type information

? navigability

? dependencies

In contrast to conceptual classes in the Domain Model, design classes in the DCDs show definitions
for software classes rather than real-world concepts.

2. Steps in creating DCD
? Identify software classes

Object Oriented Analysis and Design Design Class Diagrams

Compiled by Roshan Chitrakar 2 of 6

? Illustrate them by Class Diagrams

? Add Method names

? Add Type information

? Add Association and Navigability

? Add Dependency relationship

2.1. Identify Software Classes and Illustrate Them by Class Diagrams

The first step in the creation of DCDs as part of the solution model is to identify those classes that
participate in the software solution. These can be found by scanning all the interaction diagrams and
listing the classes mentioned.

The next step is to draw a class diagram for these classes and include the attributes previously
identified in the Domain Model that are also used in the design.

Note that some of the concepts in the Domain Model, such as Cashier, are not present in the design.
There is no need—for the current iteration—to represent them in software. However, in later
iterations, as new requirements and use cases are tackled, they may enter into the design. For
example, when security and log-in requirements are implemented, it is likely that a software class
named Cashier will be releva nt.

2.2. Add Method Names

The methods of each class can be identified by analyzing the interaction diagrams, For example, if
the message makeLineltem is sent to an instance of class Sale, then class Sale must define a
makeLineItem method.

In general, the set of all messages sent to a class X across all interaction diagrams indicates the
majority of methods that class X must define.

Object Oriented Analysis and Design Design Class Diagrams

Compiled by Roshan Chitrakar 3 of 6

2.2.1. Method Name Issues

The following special issues must be considered with respect to method names:

? interpretation of the create message

? depiction of accessing methods

? interpretation of messages to multiobjects

? language-dependent syntax

2.2.1.1.Method Names—create
The create message is a possible UML language independent form to indicate instantiation and
initialization. When translating the design to an object oriented programming language, it must be
expressed in terms of its idioms for instantiation and initialization. There is no actual create method
in C++, Java, or Smalltalk. For example, in C++, it implies automatic allocation, or free store
allocation with the new operator, followed by a constructor call. In Java, it implies the invocation of
the new operator, followed by a constructor call.

Because of its multiple interpretations, and also because initialization is a very common activity, it is
common to omit creation-related methods and constructors from a DCD.

2.2.1.2.Method Names—Accessing Methods
Accessing methods retrieve (accessor method) or set (mutator method) attributes. In some languages
(such as Java) it is a common idiom to have an accessor and mutator for each attribute, and to declare
all attributes private (to enforce data encapsulation). These methods are usually excluded from
depiction in the class diagram because of the high noise-to-value ratio they generate; for n attributes,
there are 2n uninteresting methods. -

2.2.1.3.Method Names—Multiobjects
A message to a multiobject is interpreted as a message to the container/collection object itself. These
container/collection interfaces or classes (such as the interface java.util.Map) are usually predefined
library elements, and it is not useful to show these classes explicitly in the DUD, since they add
noise, but little new information.

2.2.1.4.Method Names—Language -Dependent Syntax
Some languages, such as Smalltalk, have a syntax that is very different from the basic UML format
of methodName{pararncterList}. It is recommended that the basic UML format be used, even if the
planned implementation language uses a different syntax. The translation should ideally take place

Object Oriented Analysis and Design Design Class Diagrams

Compiled by Roshan Chitrakar 4 of 6

during code generation time, instead of during the creation of the class diagrams. However, the UML
does allow other syntax for method specification.

2.2.2. Adding More Type Information

The types of the attributes, method parameters, and method return values may all optionally be
shown. The question as to whether to show this information or not, should be considered in the
following context:

The DCD should be created by considering the audience.

? If it is being created in a CASE tool with automatic code generation, full and exhaustive
details are necessary.

? If it is being created for software developers to read, exhaustive low-level detail may
adversely affect the noise ratio.

For example, is it necessary to show all the parameters and their type information? It depends on
how obvious the information is to the intended audience.

2.2.3. Adding Associations and Navigability

Each end of an association is called a role, and in the DCDs, the role may be decorated with a
navigability arrow. Navigability is a property of the role that indicates that it is possible to navigate
uni-directionally across the association from objects of the source to target class. Navigability
implies visibility. The usual interpretation of an association with a navigability arrow is attribute
visibility from the source to target class.

During implementation in an object- oriented programming language it is usually translated as the
source class having an attribute that refers to an instance of the target class. For instance, the Register
class will define an attribute that references a Sale instance. Most, if not all, associations in DCDs
should be adorned with the necessary navigability arrows. The required visibility and associations
between classes are indicated by the interaction diagrams.

Object Oriented Analysis and Design Design Class Diagrams

Compiled by Roshan Chitrakar 5 of 6

2.2.4. Adding Dependency Relationships

The UML includes a general dependency relationship, which indicates that one element (of any kind,
including classes, use cases, and so on) has knowledge of another element. It is illustrated with a
dashed arrow line. In class diagrams the dependency relationship is useful to depict non-attribute
visibility between classes; in other words, parameter, global, or locally declared visibility. By
contrast, plain attribute visibility is shown with a regular association line and a navigability arrow.
For example, the Register software object receives a return object of type ProductSpecification from
the specification message it sent to a ProductCatalog. Thus Register has a short-term locally
declared visibility to ProductSpecifications. And Sale receives a ProductSpecification as a parameter
in the makeLineItem message; it has parameter visibility to one.

These non-attribute visibilities may be illustrated with the dashed arrow line indicating a dependency
relationship. There is no significance in the curving of the dependency lines; it is graphically
convenient.

Object Oriented Analysis and Design Design Class Diagrams

Compiled by Roshan Chitrakar 6 of 6

2.3. DCDs Within the UP

Inception—The Design Model a DCDs will not usually be started until elaboration because it
involves detailed design decisions, which are premature during inception

Elaboration—During this phase DCDs will accompany the use-case realization interaction diagrams;
they maybe created for the most architecturally significant classes of the design.

Note that CASE tools can reverse-engineer (generate) DCDS from source code. It is recommended
to generate DCDs regularly from the source code, to visualize the static structure of the system.

Construction—DCDs will continue to be generated from the source code as an aid in visualizing the
static structure of the system.

